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Abstract—We consider the problem of decentralized detection
in a network consisting of a large number of nodes arranged as a
tree of bounded height, under the assumption of conditionally inde-
pendent and identically distributed (i.i.d.) observations. We char-
acterize the optimal error exponent under a Neyman–Pearson for-
mulation. We show that the Type II error probability decays ex-
ponentially fast with the number of nodes, and the optimal error
exponent is often the same as that corresponding to a parallel con-
figuration. We provide sufficient, as well as necessary, conditions
for this to happen. For those networks satisfying the sufficient con-
ditions, we propose a simple strategy that nearly achieves the op-
timal error exponent, and in which all non-leaf nodes need only
send 1-bit messages.

Index Terms—Decentralized detection, error exponent, sensor
networks.

I. INTRODUCTION

M OST of the decentralized detection literature has been
concerned with characterizing optimal detection strate-

gies for particular sensor configurations; the comparison of the
detection performance of different configurations is a rather un-
explored area. We bridge this gap by considering the asymptotic
performance of bounded height tree networks. We analyze the
dependence of the optimal error exponent on the network archi-
tecture, and characterize the optimal error exponent for a large
class of tree networks. The problem of optimal decentralized
detection has attracted a lot of interest over the last 25 years.
Tenney and Sandell [1] are the first to consider a decentralized
detection system in which each of several sensors makes an ob-
servation and sends a summary (e.g., using a quantizer or other
“transmission function”) to a fusion center. Such a system is to
be contrasted to a centralized one, where the raw observations
are transmitted directly to the fusion center. The framework in-
troduced in [1] involves a “star topology” or “parallel configu-
ration”: the fusion center is regarded as the root of a tree, while
the sensors are the leaves, directly connected to the root. Sev-
eral pieces of work follow, e.g., [2]–[12], all of which study the
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parallel configuration under a Neyman–Pearson or Bayesian cri-
terion. A common goal of these references is to characterize the
optimal transmission function, where optimality usually refers
to the minimization of the probability of error or some other cost
function at the fusion center. A typical result is that under the
assumption of (conditionally) independent sensor observations,
likelihood ratio quantizers are optimal; see [6] for a summary of
such results.

The study of sensor networks other than the parallel configu-
ration is initiated in [13], which considers a tandem configura-
tion, as well as more general tree configurations, and character-
izes optimal transmission strategies under a Bayesian formula-
tion. Tree configurations are also discussed in [14]–[21], under
various performance objectives. In all but the simplest cases, the
exact form of optimal strategies in tree configurations is difficult
to derive. Most of these references focus on person-by-person
(PBP) optimality and obtain necessary, but not sufficient, condi-
tions for an optimal strategy. When the transmission functions
are assumed to be finite-alphabet quantizers, typical results es-
tablish that under a conditional independence assumption, like-
lihood ratio quantizers are PBP optimal. However, finding the
optimal quantizer thresholds requires the solution of a nonlinear
system of equations, with as many equations as there are thresh-
olds. As a consequence, computing the optimal thresholds or
characterizing the overall performance is hard, even for net-
works of moderate size.

Because of these difficulties, the analysis and comparison of
large sensor networks is apparently tractable only in an asymp-
totic regime that focuses on the rate of decay of the error prob-
abilities as the number of sensors increases. For example, in the
Neyman–Pearson framework, one can focus on minimizing the
error exponent1

where is the Type II error probability at the fusion center
and is the number of sensors, while keeping the Type I error
probability less than some given threshold. Note our conven-
tion that error exponents are negative numbers. The magnitude
of the error exponent, , is commonly referred to as the rate of
decay of the Type II error probability. A larger would trans-
late to a faster decay rate, hence a better detection performance.
This problem has been studied in [22], for the case of a parallel
configuration with a large number of sensors that receive inde-
pendent and identically distributed (i.i.d.) observations.

The asymptotic performance of another special configuration,
involving sensors arranged in tandem, has been studied in

1Throughout this paper, ��� stands for the natural logarithm.
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Fig. 1. A tree network of height �, with ��� leaves. Its error probability is no
larger than that of a parallel configuration with ��� leaves and a fusion center.
If � is bounded while � increases, the optimal error exponent is the same as for
a parallel configuration with � leaves.

[23]–[25], under a Bayesian formulation. Necessary and suffi-
cient conditions for the error probability to decrease to zero as

increases have been derived. However, even when the error
probability decreases to zero, it apparently does so at a subex-
ponential rate (see [26] for such a result for the Bayesian case).
Accordingly, [25] argues that the tandem configuration is inef-
ficient and suggests that as the number of sensors increases, the
network “should expand more in a parallel than in [a] tandem”
fashion.

Even though the error probabilities in a parallel configura-
tion decrease exponentially, the energy consumption of having
each sensor transmit directly to the fusion center can be too high.
The energy consumption can be reduced by setting up a directed
spanning in-tree, rooted at the fusion center. In a tree config-
uration, each non-leaf node combines its own observation (if
any) with the messages it has received and forms a new mes-
sage, which it transmits to another node. In this way, informa-
tion from each node is propagated along a multihop path to the
fusion center, but the information is “degraded” along the way.
For the case where observations are obtained only at the leaves,
it is not hard to see that the detection performance of such a tree
cannot be better than that of a parallel configuration with the
same number of leaves.

In this paper, we investigate the detection performance of a
tree configuration under a Neyman–Pearson criterion. We re-
strict to trees with bounded height for two reasons. First, without
a restriction on the height of the tree, performance can be poor
(this is exemplified by tandem networks in which, as remarked
above, the error probability seems to decay at a subexponential
rate). Second, bounded height translates to a bound on the delay
until information reaches the fusion center.

As it is not apparent that the Type II error probability decays
exponentially fast with the number of nodes in the network, we
first show that under the bounded height assumption, exponen-
tial decay is possible. We then obtain the rather counterintuitive
result that if leaves dominate (in the sense that asymptotically
almost all nodes are leaves), then bounded height trees have the
same asymptotic performance as the parallel configuration, even
in nontrivial cases. (Such an equality is clear in some trivial
cases, e.g., the configuration shown in Fig. 1, but is unexpected
in general.) This result has important ramifications: a system
designer can reduce the energy consumption in a network (e.g.,
by employing an -hop spanning tree that minimizes the overall
energy consumption), without losing detection efficiency, under
certain conditions.

We also provide a strategy in which each non-leaf node sends
only a 1-bit message, and which nearly achieves the same per-
formance as the parallel configuration. These results are coun-

terintuitive for the following reasons: 1) messages are com-
pressed to only 1 bit at each non-leaf node so that “information”
is lost along the way, whereas in the parallel configuration, no
such compression occurs; 2) even though leaves dominate, there
is no reason why the error exponent will be determined solely by
the leaves. For example, our discussion in Section V-E indicates
that without the bounded height assumption, or if a Bayesian
framework is assumed instead of the Neyman–Pearson formu-
lation, then a generic tree network (of height greater than ) per-
forms strictly worse than a parallel configuration, even if leaves
dominate.

Finally, under a mild additional assumption on the allowed
transmission functions, we find that the sufficient conditions for
achieving the same error exponent as a parallel configuration,
are also necessary.

The rest of this paper is organized as follows. In Section II,
we present our model in detail. In Section III, we state the
Neyman–Pearson problem, provide some motivating examples,
and state the main results. In Section IV, we consider “relay
trees,” in which observations are only made at the leaves. In
Section V, we prove the main results. Finally, in Section VI, we
summarize our work and offer some concluding remarks.

II. PROBLEM FORMULATION

In this section, we introduce the model and the required nota-
tion. We consider a decentralized binary detection problem in-
volving sensors and a fusion center; we will be interested
in the case where increases to infinity. We are given two prob-
ability spaces and , associated with two
hypotheses and . We use to denote the expectation
operator with respect to . Each sensor observes a random
variable taking values in some set . Under either hypoth-
esis , , the random variables are i.i.d., with mar-
ginal distribution .

A. Tree Networks

The configuration of the sensor network is represented by a
directed tree . Here, is the set of nodes, of
cardinality , and is the set of directed arcs of the tree. One
of the nodes (the “root”) represents the fusion center, and the
remaining nodes represent the remaining sensors. We will
always use the special symbol to denote the root of . We
assume that the arcs are oriented so that they all point toward the
fusion center. In the sequel, whenever we use the term “tree,” we
mean a directed, rooted tree as described above.

We will use the terminology “sensor” and “node” inter-
changeably. Moreover, the fusion center will also be called a
sensor, even though it plays the special role of fusing; whether
the fusion center makes its own observation or not is irrelevant,
since we are working in the large regime, and we will assume
it does not.

We say that node is a predecessor of node if there exists
a directed path from to . In this case, we also say that is a
successor of . An immediate predecessor of node is a node

such that . An immediate successor is similarly
defined. Let the set of immediate predecessors of be . If

is a leaf, is naturally defined to be empty. The length
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Fig. 2. Both nodes � and � belong to the set � , but only node � belongs to
the set � .

of a path is defined as the number of arcs in the path. The height
of the tree is the length of the longest path from a leaf to the
root, and will be denoted by .

Since we are interested in asymptotically large values of ,
we will consider a sequence of trees . While we could
think of the sequence as representing the evolution of the net-
work as sensors are added, we do not require the sequence
to be an increasing sequence of sets; thus, the addition of a new
sensor to may result in some edges being deleted and some
new edges being added. We define the height of a sequence of
trees to be . We are interested in tree sequences
of bounded height, i.e., .

Definition 1 ( —Uniform Tree): A tree is said to be -uni-
form if the length of every path from a leaf to the root is exactly

. A sequence of trees is said to be -uniform if there
exists some , so that for all , is -uniform.

For a tree with height , we say that a node is at level if it is
connected to the fusion center via a path of length . Hence,
the fusion center is at level , while in an -uniform tree, all
leaves are at level .

Let be the number of leaves of the subtree rooted at the
node . (These are the leaves whose path to goes through .)
Thus, is the total number of leaves. Let be the total
number of predecessors of , i.e., the total number of nodes in
the subtree rooted at , not counting itself. Thus,

. We let be the set of nodes whose immediate
predecessors include leaves of the tree . Finally, we let

be the set of nodes all of whose predecessors are leaves; see
Fig. 2.

B. Strategies

Given a tree , consider a node . Node receives mes-
sages from every (i.e., from its immediate prede-
cessors). Node then uses a transmission function to encode
and transmit a summary of its
own observation , and of the received messages

, to its immediate successor.2 We constrain all messages
to be symbols in a fixed alphabet . Thus, if the in-degree of
is , then the transmission function maps
to . Let be a given set of transmission functions that the
node can choose from. In general, is a subset of the set
of all possible mappings from to . For example,
is often assumed to be the set of quantizers whose outputs are
the result of comparing likelihood ratios to some thresholds (cf.

2To simplify the notation, we suppress the dependence of � , � , � , etc.,
on �.

the definition of a log-likelihood ratio quantizer (LLRQ) in Sec-
tion III-B). For convenience, we denote the set of transmission
functions for the leaves, , by . We assume that all trans-
missions are perfectly reliable.

Consider now the root , and suppose that it has immediate
predecessors. It receives messages from its immediate predeces-
sors, and based on this information, it decides between the two
hypotheses and , using a fusion rule .3

Let be a binary-valued random variable indicating the deci-
sion of the fusion center.

We define a strategy for a tree , with nodes and a
fusion center, as a collection of transmission functions, one for
each node, and a fusion rule. In some cases, we will be con-
sidering strategies in which only the leaves make observations;
every other node simply fuses the messages it has received,
and forwards a message to its im-
mediate successor. A strategy of this type will be called a relay
strategy. A tree network in which we restrict to relay strategies
will be called a relay tree. If in addition, the alphabet is bi-
nary, we will use the terms 1-bit relay strategy and 1-bit relay
tree. Finally, in a relay tree, nodes other than the root and the
leaves will be called relay nodes.

III. THE NEYMAN–PEARSON PROBLEM

In this section, we formulate the Neyman–Pearson decentral-
ized detection problem in a tree network. We provide some moti-
vating examples, and introduce our assumptions. Then, we give
a summary of the main results.

Given a tree , we require that the Type I error probability
be no more than a given . A strategy

is said to be admissible if it meets this constraint. We are inter-
ested in minimizing the Type II error probability .
Accordingly, we define as the infimum of ,
over all admissible strategies. Similarly, we define as
the infimum of , over all admissible relay strategies.
Typically, or will converge to zero as .
We are interested in the question of whether such convergence
takes place exponentially fast, and in the exact value of the Type
II error exponent, defined by

Note that in the relay case, we use the total number of leaves
instead of in the definition of . This is because only

the leaves make observations and therefore, measures the
rate of error decay per observation.

We denote the Kullback–Leibler (KL) divergence of two
probability measures, and , as

3Recall that in centralized Neyman–Pearson detection, randomization can re-
duce the Type II error probability. Therefore, in general, the fusion center uses
a randomized fusion rule to make its decision. Similarly, the transmission func-
tions � used by each node �, can also be randomized. We avoid any discussion
of randomization to simplify the exposition, and because randomization is not
required asymptotically, as will become apparent in Section V.
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where is the expectation operator with respect to (w.r.t.) .
Suppose that is a sensor observation. For any , let the
distribution of , under hypothesis , be . Note that

, with both inequalities being
strict as long as the measures and are not indistinguish-
able.

In the classical case of a parallel configuration, with
leaves directly connected to the fusion center, the optimal error
exponent, denoted as , is given by [22]

(1)

under Assumptions 1 and 2, stated in Section III-B below.
Our objective is to study and for different sequences of

trees. In particular, we wish to obtain bounds on these quantities,
develop conditions under which they are strictly negative (in-
dicating exponential decay of error probabilities), and develop
conditions under which they are equal to . At this point, under
Assumptions 1 and 2, we can record two relations that are al-
ways true

(2)

where . The first inequality is true because
all of the combining of messages that takes place in a relay net-
work can be carried out internally, at the fusion center of a par-
allel network with the same number of leaves. The inequality

follows from the fact that
is the classical error exponent in a centralized system where all
raw observations are transmitted directly to the fusion center.
Finally, the inequality follows because an optimal
strategy is at least as good as an optimal relay strategy; the factor
of arises because we have normalized by instead of

.
For a sequence of trees of the form shown in Fig. 1, it is easily

seen that . In order to develop some insights into
the problem, we now consider some less trivial examples.

A. Motivating Examples

In the following examples, we restrict to relay strategies for
simplicity, i.e., we are interested in characterizing the error
exponent . However, most of our subsequent results hold
without such a restriction, and similar statements can be made
about the error exponent (cf. Theorem 1).

Example 1: Consider a -uniform sequence of trees, as
shown in Fig. 3, where each node receives messages from

leaves (for simplicity, we assume that is odd).
Let us restrict to 1-bit relay strategies. Consider the fusion

rule that declares iff both and send a . In order to
keep the Type I error probability bounded by , we view the
message by each as a local decision about the hypothesis,
and require that its local Type I error probability be bounded
by . Furthermore, by viewing the subtree rooted at as a
parallel configuration, we can design strategies for each subtree
so that

(3)

Fig. 3. A �-uniform tree with two relay nodes.

Fig. 4. A �-uniform tree with a large number of relay nodes.

At the fusion center, the Type II error exponent is then given by

where the last equality follows from (3). This shows that the
Type II error probability falls exponentially and, more surpris-
ingly, that . In view of (2), we have . It is not
difficult to generalize this conclusion to all sequences of trees in
which the number of relay nodes is bounded. For
such sequences, we will also see that (cf. Theorem 1
(iii)).

Example 2: We now consider an example in which the
number of relay nodes grows with . In Fig. 4, we let both
and be increasing functions of (the total number of nodes),
in a manner to be made explicit shortly.

Let us try to apply a similar argument as in Example 1, to
see whether the optimal exponent of the parallel configuration
can be achieved with a relay strategy, i.e., whether .
We let each node use a local Neyman–Pearson test. We also
let the fusion center declare iff it receives a from all relay
sensors. In order to have a hope of achieving the error expo-
nent of the parallel configuration, we need to choose the local
Neyman–Pearson test at each relay so that its local Type II error
exponent is close to . However, the
associated local Type I error cannot fall faster than exponen-
tially, so we can assume it is bounded below by ,
for some , and for all large enough. In that case, the
overall Type I error probability (at the fusion center) is at least

. We then note that if increases quickly with
(e.g., ), the Type I error probability approaches ,

and eventually exceeds . Hence, we no longer have an admis-
sible strategy. Thus, if there is a hope of achieving the optimal
exponent of the parallel configuration, a more complicated
fusion rule will have to be used.
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Fig. 5. A �-uniform tree, with � � � �����.

Our subsequent results will establish that, similar to Ex-
ample 1, the equalities also hold in Example 2.
However, Example 2 shows that in order to achieve this optimal
error exponent, we may need to employ nontrivial fusion rules
at the fusion center (and for similar reasons at the relay nodes),
and various thresholds will have to be properly tuned. The
simplicity of the fusion rule in Example 1 is not representative.

In our next example, the optimal error exponent is inferior
(strictly larger) than that of a parallel configuration.

Example 3: Consider a sequence of 1-bit relay trees with the
structure shown in Fig. 5. Let the observations at the leaves
be i.i.d. Bernoulli random variables with parameter under

, and parameter under , where . Note that

We can identify this relay tree with a parallel configuration
involving nodes, with each node receiving an independent
observation distributed as . Note that we can re-
strict the transmission function to be the same for all nodes

[22], without loss of optimality. We have

(4)

To minimize the right-hand side (RHS) of (4), we only need
to consider a small number of choices for . If

, we are effectively removing half of the original nodes,
and the resulting error exponent is , which is inferior to

. Suppose now that is of the form iff
. Then, it is easy to see, after some calculations

(omitted), that

and

Fig. 6. A �-uniform tree, with � �� � � � � �.

Finally, we need to consider of the form iff
. A similar calculation (omitted) shows that the

resulting error exponent is again inferior. We conclude that the
relay network is strictly inferior to the parallel configuration,
i.e., . An explanation is provided by noting that this
sequence of trees violates a necessary condition, developed in
Section V-F for the optimal error exponent to be the same as
that of a parallel configuration; see Theorem 1(iv).

A comparison of the results for the previous examples sug-
gests that we have (respectively, ) when-
ever the degree of level 1 nodes increases (respectively, stays
bounded) as increases. That would still leave open the case
of networks in which different level 1 nodes have different de-
grees, as in our next example.

Example 4: Consider a sequence of -uniform trees of the
form shown in Fig. 6. Each node , , has
leaves attached to it. We will see that the optimal error exponent
is again the same as for a parallel configuration, i.e.,

. (cf. Theorem 1(ii)).

B. Assumptions

In this subsection, we list our assumptions. Assumptions 1
and 2 are similar to the assumptions made in the study of the
parallel configuration (see [22]).

Assumption 1: The measures and are equivalent,
i.e., they are absolutely continuous w.r.t. each other. Further-
more, there exists some such that

.

Assumption 2:
Assumption 2 implies the following lemma; see [22] for a proof.

Lemma 1: There exists some , such that for all
,

Given an admissible strategy, and for each node , we
consider the log-likelihood ratio of the distribution of (the
message sent by ) under , w.r.t. its distribution under

where is the Radon–Nikodym derivative of the
distribution of under w.r.t. that under . If takes
values in a discrete set, then this is just the log-likelihood ratio
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. For simplicity, we let
and define the log-likelihood ratio of the received mes-

sages at node to be

(Recall that is the set of immediate predecessors of .)
A (1-bit) log-likelihood ratio quantizer (LLRQ) with

threshold for a non-leaf node , with , is a
binary-valued function on , defined by

if
if

where

(5)

By definition, a node that uses a LLRQ ignores its own obser-
vation and acts as a relay. If all non-leaf nodes use an LLRQ,
we have a special case of a relay strategy. We will assume that
LLRQs are available choices of transmission functions for all
nonleaf nodes.

Assumption 3: For all and , .

As already discussed (cf. (2)), the optimal performance of a
relay tree is always dominated by that of a parallel configuration
with the same number of leaves, i.e., . In Section V,
we find sufficient conditions under which the equality
holds. Then, in Section V-F, we look into necessary conditions
for this to be the case. It turns out that nontrivial necessary con-
ditions for the equality to hold are, in general, difficult
to obtain, because they depend on the nature of the transmission
functions available to the sensors. For example, if the sensors are
allowed to simply forward undistorted all of the messages that
they receive, then the equality holds trivially. Hence,
we need to impose some restrictions on the set of transmission
functions available, as in the assumption that follows.

Assumption 4:
(a) There exists an such that for all , we

have for all in the set of nodes whose
immediate predecessors are all leaves.

(b) Let be i.i.d. random variables under either
hypothesis , each with distribution . For ,

, and , where , Let
. We also let be the distribution

of under hypothesis . We
assume that

(6)

for all .

Assumption 4 holds in most cases of interest. Part (a) results
in no loss of generality: if in a relay tree we have
for some , we can remove the predecessor of , and
treat as a leaf. Regarding part (b), it is easy to see that the

left-hand side (LHS) of (6) is always less than or equal to the
RHS, hence we have only excluded those cases where (6) holds
with equality. We are essentially assuming that when the mes-
sages are summarized (or quantized) by

, there is some loss of information, as measured by the asso-
ciated KL divergences.

C. Main Results

In this section, we collect and summarize our main results.
The asymptotic proportion of nodes that are leaves, defined by

plays a critical role.

Theorem 1: Consider a sequence of trees, , of
bounded height. Suppose that Assumptions 1–3 hold. Then

(i) and ;
(ii) if , then ;

(iii) if the number of non-leaf nodes is bounded, or if
, then ;

(iv) if Assumption 4 also holds, we have iff .

Note that part (i) follows from (2), except for the strict neg-
ativity of the error exponents, which is established in Proposi-
tion 2. Part (ii) is proved in Proposition 3. Part (iii) is proved in
Corollary 1. (Recall that is the set of non-leaf nodes all of
whose immediate predecessors are leaves.) Part (iv) is proved in
Proposition 5. One might also have expected a result asserting
that . However, this is not true without additional as-
sumptions, as will be discussed in Section V-F.

IV. ERROR BOUNDS FOR -UNIFORM RELAY TREES

In this section, we consider a 1-bit -uniform relay tree, in
which all relay nodes at level use a LLRQ with a common
threshold . We wish to develop upper bounds for the error
probabilities at the various nodes. We do this recursively, by
moving along the levels of the tree, starting from the leaves.
Given bounds on the error probabilities associated with the mes-
sages received by a node, we develop a bound on the log-mo-
ment generating function at that node (cf. (8)), and then use the
standard Chernoff bound technique to develop a bound on the
error probability for the message sent by that node (cf. (7)).

Let , for , and . For
, , and , we define recursively

(7)

(8)

The operation in (7) is known as the Fenchel–Legendre trans-
form of [27]. We will be interested in the
case where

(9)

(10)
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Fig. 7. Typical plot of � ��� � ���, � � �.

for (11)

We now provide an inductive argument to show that the above
requirements on the thresholds are feasible. From Assump-
tion 1, there exists a that satisfies (9), hence the constraint
(10) is feasible. Furthermore, the are large devia-
tions rate functions and are therefore positive when satisfies
(10) [27]. Suppose now that and that

. From (8), is the maximum of two linear
functions of (see Fig. 7). Taking the Fenchel–Legendre trans-
form, and since satisfies (11), we obtain ,
which completes the induction.

From the definitions of and , the following relations
can be established. The proof consists of straightforward alge-
braic manipulations and is omitted.

Lemma 2: Suppose that satisfies (9), and satisfies
(10) and (11). For , we have

Furthermore, the supremum in (7) is achieved at some
for , and for . For , we

have

Proposition 1 that follows, whose proof is provided in the
Appendix, will be our main tool in obtaining upper bounds
on error probabilities. It shows that the Type I and II error
exponents are essentially upper-bounded by
and , respectively. Recall that is the total
number of predecessors of , is the number of leaves in
the subtree rooted at , and is the set of nodes all of whose
immediate predecessors are leaves.

Proposition 1: Fix some , and consider a sequence
of trees such that for all , is -uniform.
Suppose that Assumptions 1 and 2 hold. Suppose that, for every

, every leaf uses the same transmission function , which
satisfies (9), and that every level node uses an LLRQ
with threshold , satisfying (10) and (11).

(i) For all nodes of level and for all , we have

(ii) Suppose that for all and all , we have
. Then, for all , we have

V. OPTIMAL ERROR EXPONENT

In this section, we show that the Type II error probability
in a sequence of bounded height trees falls exponentially fast
with the number of nodes. We derive sufficient conditions for
the error exponent to be the same as that of a parallel configu-
ration. We show that if almost all of the nodes are leaves, i.e.,

, then . The condition is also
equivalent to another condition that requires that the proportion
of leaves attached to bounded degree nodes vanishes asymptot-
ically. We also show that under some additional mild assump-
tions, this sufficient condition is necessary. We start with some
graph-theoretic preliminaries.

A. Properties of Trees

In this section, we define various quantities associated with
a tree, and derive a few elementary relations that will be used
later.

Recall that is the set of non-leaf nodes all of whose pre-
decessors are leaves. (For an -uniform tree, is the set of all
level 1 nodes.) For , let

(12)

and

(13)

where the sum is taken to be zero if the set is empty. Let
. For a sequence of -uniform trees, this

is the asymptotic proportion of leaves that belong to “small”
subtrees in the network.

It turns out that it is easier to work with -uniform trees. For
this reason, we show how to transform any tree of height to
an -uniform tree.
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Height Uniformization Procedure. Consider a tree
of height , and a node that has at least one leaf

as an immediate predecessor ( ). Let be the set of
leaves that are immediate predecessors of , and whose paths
to the fusion center are of length . Add nodes,

, to ; remove the edges , for
all ; add the edges , and , for

; add the edges , for all .
This procedure is repeated for all . The resulting tree is

-uniform.

The height uniformization procedure essentially adds
more nodes to the network, and reattaches some leaves,
so that the path from every leaf has exactly hops. Let

be the new sequence of -uniform trees
obtained from , after applying the uniformization
procedure. (We are abusing notation here in that typically
does not have nodes, nor is the sequence increasing.)
Regarding notation, we adopt the convention that quantities
marked with a prime are defined with respect to .

Note that . For the case of a relay network, it
is seen that any function of the observations at the leaves that
can be computed in can also be computed in . Thus, the
detection performance of is no better than that of . Hence,
we obtain

(14)

Therefore, any upper bound derived for -uniform trees, readily
translates to an upper bound for general trees. On the other hand,
the coefficients for the -uniform trees (to be denoted
by ) are different from the coefficients for the original
sequence . They are related as follows. The proof is given in
the Appendix.

Lemma 3: For any , we have

In particular, if for all , then for all
.

It turns out that the condition is equivalent to the con-
dition for all . The proof is provided in the
Appendix.

Lemma 4: We have iff for all .

B. An Upper Bound

In this subsection, we develop an upper bound on the Type
II error probabilities, which takes into account some qualitative
properties of the sequence of trees, as captured by .

Lemma 5: Consider an -uniform sequence of trees ,
and suppose that Assumptions 1–3 hold. For every , there
exists some such that

Proof: If , there is nothing to prove, since
and . Suppose that . Choose

such that

Let , for ,
and note that

(15)

Because of (15), we have . Furthermore,
using Lemma 2, . Now
let , and suppose that and

. From Lemma 2

and

Hence, by induction, satisfies (10) and (11), so that Proposi-
tion 1 can be applied.

Choose sufficiently large so that . If
, the claimed result holds trivially. Hence, we assume

that . In this case, for sufficiently large, there ex-
ists at least one node in so that . We remove all
nodes with , and their immediate predeces-
sors. Then, we remove all level–2 nodes that no longer have
any predecessors, and so on. In this way, we obtain an -uni-
form subtree of , to be denoted by . (Quantities marked
with double primes are defined w.r.t. .) We have
for all , and .

Consider the following relay strategy on the tree . (Since
this is a subtree of , this is also a relay strategy for the tree

, with some nodes remaining idle.) The leaves transmit with
transmission function , and the other nodes use a 1-bit LLRQ
with threshold . (Note that in the definition (5) of the normal-
ized log-likelihood ratio, the denominator now becomes

.)
We first show that the strategy just described is admissible.

We apply part (ii) of Proposition 1 to , to obtain

hence , when is sufficiently large.
To bound the Type II error probability, we use Proposition 1

and Lemma 2, to obtain
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This proves the lemma.

C. Exponential Decay of Error Probabilities

We now establish that Type II error probabilities decay ex-
ponentially. The bounded height assumption is crucial for this
result. Indeed, for the case of a tandem configuration, the expo-
nential decay property does not seem to hold.

Proposition 2: Consider a sequence of trees of height , and
let Assumptions 1–3 hold. Then

and

Proof: The lower bounds on and follow from (2).
Note that cannot be equal to because it cannot be better
than the error exponent of a parallel configuration in which
all the observations are provided uncompressed to the fusion
center. The error exponent in the latter case is ,
by Stein’s lemma, and is finite as a consequence of Assumption
2.

It remains to show that the optimal error exponents are nega-
tive. Every tree of height satisfies . From (2),
we obtain . Therefore, we only need to show that

. As discussed in connection with (14), we can restrict
attention to a sequence of -uniform trees.

We use induction on . If , we have a parallel con-
figuration and the result follows from [22]. Suppose that the
result is true for all sequences of -uniform trees. Con-
sider now a sequence of -uniform trees. Let be such that

. From Lemma 5, there exists some such that
. If , we readily obtain the in-

equality .
Suppose now that . We only need to consider a se-

quence such that . Using the inequality

(22), we have

and

(16)

For each node , we remove all of its immediate pre-
decessors (leaves) except for one, call it . The leaf transmits

to its immediate successor . Since node receives only
a single message, it just forwards it to its immediate successor.
The resulting performance is the same as if the nodes in
were making a measurement and transmitting to their
successor. This is equivalent to deleting all the leaves of to
form a new tree, , which is -uniform. The preceding
argument shows that .

We have , and from (16)

Therefore

By the induction hypothesis, the RHS in the above inequality is
negative and the proof is complete.

D. Sufficient Conditions For Matching the Performance of the
Parallel Configuration

We are now ready to prove the main result of this section. It
shows that when for all , or equivalently, when

(cf. Lemma 4), bounded height tree networks match the
performance of the parallel configuration.

Proposition 3: Consider a sequence of trees of height in
which , or equivalently for all . Suppose
that Assumptions 1–3 hold. Then

Furthermore, if the sequence of trees is -uniform, the optimal
error exponent does not change even if we restrict to relay strate-
gies in which every leaf uses the same transmission function and
all other nodes use a 1-bit LLRQ with the same threshold.

Proof: We have shown in (2). We now prove that
. As already explained, there is no loss in generality in

assuming that the sequence of trees is -uniform (by performing
the height uniformization procedure, and using Lemma 3).

For any , Lemma 5 yields

Letting , we obtain , hence . From (2)
with , we obtain .

We now show that . Consider a tree with nodes,
of which are leaves. We will compare it with another

sensor network in which nodes transmit a message
to the fusion center and nodes transmit

their raw observations to the fusion center. The latter network
can simulate the original network, and therefore its optimal
error exponent is at least as good. By a standard argument
(similar to the one in Proposition 4 below), the optimal error
exponent in the latter network can be shown to be greater than
or equal to

concluding the proof.

Fix an . For any tree sequence with ,
we can perform the height uniformization procedure to obtain
an -uniform sequence of trees. In practice, this height uni-
formization procedure may be performed virtually at each node,
so that the tree sequence simulates an -uniform tree sequence.
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A simple strategy on the height uniformized tree sequence that
-achieves the optimal error exponent is a relay strategy in which

(i) all leaves transmit with the same transmission function
, where is chosen such that

;
(ii) all other nodes use 1-bit LLRQs with the same threshold

.
Lemmas 3 and 4, and the proof of Lemma 5 show that this

relay strategy -achieves the optimal error exponent
. This also shows that there is no loss in optimality even if

we restrict the relay nodes to use only 1-bit LLRQs. This may
be useful in situations where the nodes are simple, low-cost de-
vices.

Proposition 3 provides sufficient conditions for a sequence of
trees to achieve the same error exponent as the parallel config-
uration. We note a few special cases in which these sufficient
conditions are satisfied. The first one is the case where there is a
finite bound on the number of nodes that are not leaves. In that
case, is easily seen to be . This is consistent with the con-
clusion of Example 1, where a simpler argument was used. The
second is the more general case where nodes in are attached
to a growing number of leaves, which implies that for
all .

Corollary 1: Suppose that Assumptions 1–3 hold. Suppose
further that either of the following conditions holds.

(i) There is a finite bound on the number of nodes that are
not leaves.

(ii) We have .
Then, .

The above corollary can be applied to Example 2. In that ex-
ample, every level–1 node has leaves attached to it, with
growing large as increases. Therefore, the tree network sat-
isfies condition (ii) in Corollary 1, and the optimal error expo-
nent is . In this case, even if the number of
level–1 nodes grows much faster than , we still achieve the
same error exponent as the parallel configuration. The above
proposed strategy, in which every leaf uses the same transmis-
sion function, and every node uses the same LLRQ, will nearly
achieve the optimal performance.

We are now in a position to determine the optimal error ex-
ponent in Example 4.

Example 4, revisited: Recall that in Example 4, every
has of predecessors. It is easy to check that .

From Proposition 3, the optimal error exponent is the same as
that for the parallel configuration.

E. Discussion of the Sufficient Conditions

Proposition 3 is unexpected as it establishes that the perfor-
mance of a tree possessing certain qualitative properties is com-
parable to that of the parallel configuration. Furthermore, the
optimal performance is obtained even if we restrict the nonleaf
nodes to use 1-bit LLRQ’s. At first sight, it might appear intu-
itive that if the leaves dominate in a relay tree ( ), then
the tree should always have the same performance as a parallel
configuration. However, this intuition is misleading, as this is
not the case for a Bayesian formulation, in which both the Type

I and II error probabilities are required to decay at the same rate.
To see this, consider the -uniform tree in Fig. 3, where every
node is constrained to sending 1-bit messages. Suppose we are
given nonzero prior probabilities and for the hypotheses

and . Instead of the Neyman–Pearson criterion, suppose
that we are interested in minimizing the error exponent

where is the minimum of the error probability
, optimized over all strategies. It can be shown

that to obtain the optimal error exponent, we only need to con-
sider the following two fusion rules: a) the fusion center declares

iff both and send a , or b) the fusion center declares
iff both and send a . Then, using the results in [28],

the optimal error exponent for this tree network is strictly worse
than that for the parallel configuration. Similarly, if we constrain
the Type I error in the Neyman–Pearson criterion to decay faster
than a predetermined rate, it can be shown that the optimal Type
II error exponent for a tree network can be strictly worse than
that of a parallel configuration.

Note that the bounded height assumption is essential in
proving , when . Although our tech-
nique can be extended to include those tree sequences whose
height grows very slowly compared to (on the order of

), we have not been able to find the
optimal error exponent for the general case of unbounded
height tree sequences. As noted before, in a tandem network,
the Bayesian error probability decays subexponentially fast
[26]. The proof of Proposition 2 in [26] involves the construc-
tion of a tree network, with unbounded height, and in which

. In that proof, it is also shown that such a network has
a subexponential rate of error decay. We conjecture that this is
also the case for the Neyman–Pearson formulation.

In summary, for a tree network to achieve the same Type II
error exponent as a parallel configuration, we require that the
tree sequence have a bounded height, satisfy the condition

, and that the error criterion be the Neyman–Pearson criterion.
Without any one of these three conditions, our results no longer
hold.

F. A Necessary Condition For Matching the Performance of
the Parallel Configuration

In this subsection, we establish necessary conditions under
which a sequence of relay trees with bounded height performs
as well as a parallel configuration. As noted in Section III-B,
any necessary conditions generally depend on the type of trans-
mission functions available to the relay nodes. However, under
an additional condition (Assumption 4), the sufficient condition
for in Proposition 3 is also necessary.

Proposition 4: Suppose that Assumptions 1, 2, and 4 hold,
and . If there exists some such that
(equivalently, ), then .

Proof: Fix some and suppose that . Given a
tree , we construct a new tree , as follows. We remove all
nodes other than the leaves and the nodes in . For all the
leaves that are not immediate predecessors of some ,
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we let transmit its message directly to the fusion center. We
add new edges , for each . This gives us a tree
of height , with and . The latter tree

can simulate the tree , hence the optimal error exponent
associated with the sequence is bounded below by the
optimal error exponent associated with the sequence .
Therefore, without loss of generality, we only need to prove the
proposition for a sequence of trees of height , and in which

, for some such that ; we henceforth
assume that this is the case. The rest of the argument is similar
to the proof of Stein’s lemma in Lemma 3.4.7 of [27]. Suppose
that a particular admissible relay strategy has been fixed, and
let be the associated Type II error probability. Let

. We show that is close to in
probability. Let be the set of leaves that transmit directly to
the fusion center. The proof of the following lemma is in the
Appendix.

Lemma 6: For all , ,
as .

We return to the proof of Proposition 4. Given the transmis-
sion functions at all other nodes, the fusion center will optimize
performance by using an appropriate likelihood ratio test, with
a (possibly randomized) threshold. We can therefore assume,
without loss of generality, that this is the case. We let be the
threshold chosen, and note that it must satisfy

(17)

From a change of measure argument (see Lemma 3.4.7 in [27]),
we have for

Using (17) and Lemma 6, we see that the last term goes to as
. We also have

where, using the notation in Assumption 4,

Then, letting , we have

for all . Taking completes the proof.

The condition that there exists a finite such that
for a nonvanishing proportion of nodes, in the statement of

Proposition 4, can be thought of as corresponding to a situation
where relay nodes are of two different types: high-cost relays
that can process a large number of received messages

Fig. 8. Every node makes a 3-bit observation. Leaves are constrained to
sending 1-bit messages, while level–1 nodes are constrained to sending 4-bit
messages.

and low-cost relays that can only process a limited number
of received messages ( for some small ). From this
perspective, Proposition 4 states that a tree network of height
greater than one, with a nontrivial proportion of low-cost relays,
will always have a performance worse than that of a parallel
configuration.

Together with Proposition 3, we have shown the following.

Proposition 5: Suppose that Assumptions 1–4 hold. Then,
iff (or, equivalently, iff for all ).

We close with an example in which and .
Since there are also easy examples where and ,
this suggests that one can combine them to construct examples
where and . Thus, unlike the case of a relay tree,

is not a necessary condition for .

Example 5: Consider the tree network shown in Fig. 8,
where every node makes a 3-bit observation. Each leaf then
compresses its 3-bit observation to a 1-bit message, while each
level 1 node is allowed to send a 4-bit message. (Recall that our
framework allows for different transmission function sets
at the different levels.) We assume Assumptions 1–4 hold.

Consider the following strategy: each level 1 node forwards
the two 1-bit messages it receives from its two leaves to the fu-
sion center. It then compress its own 3-bit observation into a
2-bit message before sending it to the fusion center. Using this
strategy, the tree network is equivalent to a parallel configura-
tion with nodes, of which are constrained to sending
1-bit messages, and of which are constrained to sending 2-bit
messages. Clearly, this parallel configuration performs strictly
better than one in which all nodes are constrained to sending
1-bit messages, therefore, we have .

Example 5 shows that, unlike the case of relay trees, a tree can
outperform a parallel configuration. On the other hand, Example
5 is an artifact of our assumptions. For example, if we restrict
every node in this example to sending only 1 bit, the situation
is reversed and we have . The question of whether a
parallel configuration always performs at least as well as a tree
network, i.e., whether , when every node can send the
same number of bits, remains open.

VI. CONCLUSION

We have studied the asymptotic detection performance of
tree networks with bounded height, under a Neyman–Pearson
criterion. Similar to the parallel configuration, we have shown
that the optimal Type II error probability decays exponentially
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fast with the number of nodes. In addition, we have shown that
if leaves dominate (i.e., ), the network can achieve
the same performance as if all nodes were transmitting directly
to the fusion center. We also provided a simple strategy, in
which all leaves use the same transmission function, and all
other nodes act as 1-bit relays, which achieves the optimal error
exponent to any desired accuracy. The sufficient conditions are
easy to achieve in cases of practical interest, hence, a system
designer can obtain the optimal performance while ensuring
that the network is energy efficient. Once the sufficient con-
ditions are satisfied, the architecture of the network no longer
affects its detection error exponent. On the other hand, we also
showed that for the practically interesting case, where ,
the sufficient conditions are also necessary. Thus, in a network
where the leaves do not dominate, the error decay rate will be
worse than that of a parallel configuration, and will actually
depend on the particular network architecture.

Needless to say, our conclusions only hold for the particular
setting and criterion we have employed. One issue that has not
been touched upon is that, with a relay network, a significantly
larger value of may be required before the asymptotic error
exponent yields a good approximation. Moreover, in practice, it
would be wasteful to have only the leaves make observations, if

is not large enough. Furthermore, under a Bayesian criterion,
the same performance as the parallel configuration can no longer
be achieved, although exponential decay is still possible [28].
Finally, the more realistic case where the i.i.d. assumption is
violated, remains unexplored, with work mainly limited to the
parallel configuration [29]–[34].

Future work includes characterizing the asymptotically op-
timal performance of tree networks without the bounded height
constraint. We would like to understand the rate at which the
error probability decays, and its dependence on the rate at which
the height of the tree increases. Another intriguing question,
which has been left unanswered, is whether the inequality

is always true under the bounded height assumption, when
every node is constrained to sending the same number of bits.

APPENDIX

A. Proof of Proposition 1

We first show part (i). The proof proceeds by induction on
. Suppose that , which is equivalent to the well-studied

case where all sensors transmit directly to a fusion center. In this
case, . Since ,
from [27, eq. (2.2.13)], we obtain

The inequality for the Type I error probability follows from a
similar argument.

Consider now the induction hypothesis that the result holds
for some . Given a -uniform tree rooted at , the induction
hypothesis leads to bounds on the probabilities associated with
the log-likelihood ratio of the message computed at
the node . We use these bounds to obtain bounds on the log-

moment generating function of . Recall that equals
whenever , which is the case if and only if

. Fix some . We have

Using the inequality , we
obtain

(18)

(19)

where (18) follows from the induction hypothesis.
Consider now a node at level . The subtree rooted at

is a -uniform tree. Each level node can be
viewed as the root of a -uniform tree and (19) can be applied
to . From Markov’s inequality, and since , we
have

so that

(20)

(21)
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where (20) follows from the induction hypothesis and (19).
Taking the infimum over (cf. Lemma 2), and using
(7), we obtain

A similar argument proves the result for the Type I error proba-
bility, and the proof of part (i) is complete.

For part (ii), suppose that for all and all , we
have . Note that . Furthermore, the
number of nodes at each level is bounded by , which
yields

Applying the results from part (i), with , we obtain
part (ii).

B. Proof of Lemma 3

We have . Furthermore, it can be shown that
. Therefore

where the last inequality follows from

and

Taking the limit superior as , we obtain

Suppose that for all . Then for all ,
we have

Taking , we obtain the desired result.

C. Proof of Lemma 4

Suppose that for some . Using the inequality

or

(22)

we obtain

Letting , we obtain

For the converse, suppose that for all . It can
be seen that each non-leaf node is on a path that connects some

to the fusion center. Therefore, the number of non-leaf
nodes is bounded by . We have

Therefore

This is true for all , which implies that .

D. Proof of Lemma 6

For each , we have ,
for some . Using the first and second part of
Lemma 1, there exists some , such that

(23)

where .
To prove the lemma, we use Chebyshev’s inequality, and the

inequalities for , and , to
obtain

(24)

(25)

where (24) follows from Lemma 1 and (23). The RHS of (25)
goes to zero as , and the proof is complete.
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